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STUDY OF T H E  D Y N A M I C  C O N T A C T  I N T E R A C T I O N  OF D E F O R M A B L E  BODIES 

O. V. Byehek and V. M. Sadovskii UDC 539.374 

A new algorithm for solving dynamic contact problems involving deformable bodies is proposed. 
The algorithm is based on formulation of the boundary conditions for the contact interaction 
with allowance for Coulomb friction in the form of quasivariational inequalities. The algorithm 
is numerically stable and satisfies geometric constraints in the a priori unknown contact region 
and conditions specifying that the normal pressure be nonnegative and that the vectors describing 
tangential velocity and shear stress during slip be oppositely directed. Results are presented from 
calculations performed for a contact problem for an elastoplastic body in a two-dimensional 
formulation. 

Dynamic contact problems of the theory of elasticity and plasticity with a contact region that is 
unknown beforehand and changes during deformation [1-5] have a broad range of application in connection 
with studies of the impact and piercing of barriers, explosive and hydro-explosive forging, machining, and other 
processes. Methods that are explicit with respect to time are usually used to calculate the contact boundaries 
in the numerical solution of such problems. The use of these methods inevitably results in intersection of the 
bodies undergoing deformation or violation of certain dynamic conditions in the contact region. 

In this investigation, we devise an approach based on exact formulation of the boundary conditions 
of the contact with allowance for friction in the form of quasivariational inequalities [6, 7]. The use of this 
formulation makes it possible to construct universal and effident iteration methods that are numerically stable 
and satisfy geometric constraints in the contact region and also conditions specifying that the normal pressure 
be nonnegative and the vectors of tangential velocity and shear stress during slip be oppositely directed. 

1. Con tac t  B o u n d a r y  Condi t ions .  First we shall examine the contact interaction of a deformable 
body with a perfectly rigid die occupying the spatial region ~o(x) ~< 0, which has a piecewise-smooth surface 
~o(x) = 0. We assume that when the body is in the initial undeformed state, we can distinguish a part of its 
boundary Sc whose material points at each subsequent moment of time are either in contact with the die or are 
free of stresses. On the remaining part of the boundary, sufficiently general boundary conditions are satisfied 
but contact with the die is impossible. The displacement vector u = u(t ,x)  in a Lagrangian description 
satisfies the geometric constraint ~o(x + u) i> 0 on So. Allowing for the expansion u = ul t_At+vAt + O(At 2) 
and performing certain transformations, we use this constraint to obtain an approximate constraint on the 
velocity vector of a point vV~o(x + ult_~t) >! -~0(x + ult_At) / At.  This second constraint can be used to 
numerically realize the contact conditions. By passing to the limit of At at At --* 0, we obtain the exact 
t,mstraint 

vV~o(x + u) t> - $ ( x  + u), $(x) = r ~ 0, ~o(x) = 0, (1.1) 
+oo,   o(x) > 0. 

Following [6-8], we write the contact conditions with allowance for Coulomb friction in the form of an 
inequality 

(v* - v),7. + f l~. . l ( lv;I  - Ivrl)/> O. (1.2) 

Here o',, = or,,(t, x) is the stress vector on an area of the deformed surface of the body with the normal 
n. The subscript r denotes projections of the vectors onto the tangent plane, f is the coefficient of sliding 
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friction, and v* = v*(t ,x)  is an arbitrary permissible variation of velocity at a point of the boundary Sc 
that satisfies constraint (1.1). We note that the normal to the surface of the body in the contact region 
St = {x e So: ~(x + u) = 0} is calculated from the formula n = - V ~ ( x  + u) / I V ~ ( x  + u)l. Thus, (1.1) 
actually contains only the normal component of the velocity vector vn. 

In accordance with the standard terminology, inequality (1.2) is quasivariational because the constraint 
depends on an unknown vector u. This inequality expresses the principle that the virtual work done by a 
stress in the contact region, equal to the difference between the work of the surface stresses v*~rn and the 
work of friction -fl~rnnl [Vr[, assumes the minimum value on the real velocity vector. 

Let 7 be the Lagrangian multiplier corresponding to constraint (1.1). In accordance with the Kuhn- 
Tucker theorem, in the presence of a constraint the above principle regarding the minimum of a function 
that is convex in relation to the vector v* is equivalent to the principle of the unconditional minimum of the 
Lagrangian 

L(v*,7) = v*(rn + fl nnl Iv$1- 7V*V (X + U). 
Here the multiplier 7 is nonnegative and equal to zero if ~o(x + u) > 0. 

In the case Vr # 0, the condition of the minimum L in differential form leads to the equations 
an~ = -q'lVc'(x + u)l and O'nr = --/l nnl v , / Iv~ l .  The derivative of the Lagrangian does not exist when 
v ,  = 0. In this case, it follows directly from the condition L(~, 7) t> L(v, 7) (~ is an arbitrary vector whose 
normal component is equal to vn) that ~'r(rnr +/1~11~,l t> 0. From here, with allowance for the inequality 

I  11 n,I, we obtain I,,n,I lionel. Thus, the quasivariational inequality (1.2) conforms exactly 
to the Coulomb friction law. 

Since the approximate constraint contains the projection of the velocity vector in the direction fi = 
-V (x + uh-at) / IV (x + ult-at)l, in the quasivariational inequality intended for numerical realization of 
the contact conditions we need to replace the stress aa~ by a,~ and replace the velocity vr  by the projection 
ve of the velocity vector onto the plane with the normal ft. 

Of course, the exact formulation of the contact conditions is independent of the function ~ that 
parameterizes the surface of the dies. A constraint equivalent to formula (1.1) can also be obtained by another 
method that does not require ~ to be specified. In that method, we construct a special mapping ~r of the space 
onto the boundary or part of the boundary of the die for which each material point x + u in the contact region 
is stationary and thus maps the area onto itself; an example would be a map of a design that associates each 
point of the space with the closest point of the die. If such a map is known, then the approximate constraint 
is written in the form 

where fi is a unit vector that is equal to the outer normal to the deformed surface of the body if the point x 
belongs to the contact region St-at and is equal to the vector - { x  + u l t _ a t -  l r (x  + ul t_at)  } / I  x + ut,_~,- 

+ ul,-, ,)l  ou,,id  r gion 
The ab0ve-described method is convenient for numerically solving dynamic contact problems if the 

computation is performed in t ime steps. In its practical realization, lr(x) can be a mapping that ma&es the 
point x correspond to the distance from this point to the point of intersection of the boundary of the die 
either with a straight line which passes through x and through a certain fixed internal point of the die or with 
a straight line which is orthogonal to a prescribed smooth surface inside the die (Fig. 1). 

The constraint (1.3) has a clear geometric interpretation. The exact constraint (1.1) can be obtained 
from it by passing to the limit of At. 

We similarly formulate the contact conditions for two deformable bodies. Let S + and S [  be parts of 
the boundaries of these bodies in Lagrangian variables that  completely envelop the contact regions Sp = 
{x + E Sc~: x + + u + ( t , x  +) = x -  + u - ( t , x - ) }  at each fixed moment of time t. We also assign the mapping 
lr-  of a certain region of space onto the image of the boundary S~- in the deformed state. The mapping 
is dependent on time and the parameter of the problem and transfers each material point from the contact 
region back onto itself. Since the domain of the mapping 7r- contains the deformed boundary S +, we write 
the approximate geometric constraint for the velocity of the points x + and x -  = z - ( x  + + u+)l t_at  - u - l l _a  t 
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Fig. 1 

in the form 
( v * +  _ I x  + + ' - x -  - u- I ,_, , , l  i At, 

where the vector fi is equal to n + = - n -  for x :k 6 S~_z~ t and is equal to the vector 

-(x+ + 
for points not belonging to Sf_~,. 

In the numerical realization, the mapping l r -  for the moment of time t - At can be constructed by 
one of the methods described above. The exact constraint on velocity is obtained from (1.4) with At - .  0: 

o, 
v*+n + + v * - n - < ~  -boo, x •  (1.5) 

The contact conditions are represented in the form of a quasiwriational inequality 

(v "+ - v+)o'~ + + ( v ' -  - v-)o'~" + (112)f(lo'+. + ~'~'.l)(lv; + - v ; -  I - I  v+  - vTl  ) i> o, (1.6) 
which can be interpreted as the  principle of the minimum of the work done by a normal stress in the contact 
region. The equivalence of this principle and the Coulomb friction law for two deformable bodies can be 
established by means of the Kuhn-Tucker theorem, similarly to the case of the contact of a deformable body 
and a die. The approximate formulation of the conditions of contact interaction of the bodies corresponds to a 
quasivariational inequality obtained by replacing the normal stresses by the stresses 4 - ~  fi and replacing the 
difference between the tangential components of the velocity vectors by the projection of the vector v + - v -  
onto a plane orthogonal to ft. 

2. A l g o r i t h m s  for  C o r r e c t i o n  of  t h e  Veloci t ies .  To numerically realize the contact conditions, we 
reduce the quasivariational inequalities (1.2) and (1.6) and the approximate constraints (1.3) and (1.4) to the 
following standard form: 

(w*-w)A(w-~r)+f[b(w-~)[{w(w*)-w(w)}l>0, w*g1>h,  w g / > h .  (2.1) 

Here w is the m-dimensional vector to be determined. In the case of contact of a deformable body and a die, 
this vector contains the components of the velocity vector of a specified point, namely, the node of the grid 
region in cartesian coordinates. In the case of two deformable bodies, the m-dimensional vector contains the 
components of the velocity vectors of two nodes x + and x - .  

It is important to use linear equations in boundary nodes in making the transition from (1.2) and (1.6) 
to (2.1). This makes it possible to use known parameters at the moment of time t - At to express the stresses 
at the moment t in terms of velocity at this moment. Such equations are needed when difference schemes 
that are explicit with respect to time are used to realize boundary conditions of any kind. The equations 
are usually constructed by approximating the relations for the bicharacteristics of the system of equations 
that describes the dynamic deformation of each of the interacting bodies. The coefficients of these equations 
determine the vector b and the square m x m matrix A, which is assumed to be symmetric and positive- 
definite. The assigned vector ~r contains the components of the velocities corresponding to the formulation 
of the boundary conditions for the free surface at the nodes x + and x- .  The vector g and the scalar h 
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are obtained automatically from (1.3) and (1.4). The dimensionality m of the vectors that  are introduced is 
determined by the dimensionality of the contact problem being examined (nondimensional, two-dimensional, 
and three-dimensional). 

In the variational inequality (2.1), w(w) represents the modulus of the tangent vector or the modulus 
of the difference between the projections of the velocity vectors of corresponding points on the tangent plane 
as a function of the type of interacting bodies. In the general case, the following representation is valid for 
this function: 

w(w) = max w I* = w 1, (2.2) 
I*EB 

where B is a bounded convex closed set of vectors of the dimensionality rn. In the description of the contact 
of a deformable body and a die, the set B consists of vectors ~- that are orthogonal to the vector fi and whose 
length is no greater than unity. In the case of two bodies, the set B consists of vectors of the form (~', - f ' ) .  

If by assigning the vector w = @ in inequality (2.1) we fix the expression c = f [b(w - g')l / 0, we 
arrive at the problem of minimizing the convex function r  - (1/2)(w-gr)A(w-~c)+cw(w) on the convex 
closed set K = { w :  w g />  h}. It can be shown that the mapping Q which associates the point representing 
the minimum of this function with the vector @ is compact for small values of the friction coefficients f .  

In fact, let w ~ = Q(s Then, if we assume that w* = w ~ in the variational inequality (2.1) for 
w = Q(@) and that  w* = w in a similar inequality for w ~ and if we add the results, we obtain 

(w ~ - w ) A ( w  ~ - w) ~ f ([b(@ - @)1 - [ b ( 4 / -  qc)[){w(w t) - w(w)}. 

Performing the necessary transformations and taking into account the fact that  the matrix A is positive 
definite, we then find that  

otlw' - w[ 2 ~< f [bl 1~" - ~.'1 Iw'  - w[ ,  a = min wAw.  
Iwl=l 

Thus, the mapping Q is compact for f < a / [b[ .  
By virtue of the principle of compact mappings, in the given case there is a unique stationary point 

w = Q(w) that  represents the  sought solution of the variational inequality (2.1). This point can be found by a 
successive approximation. In each step of the approximation, we solve the problem of conditional minimization 
of the function r  with a certain constant c. 

In accordance with (2.2), the function being minimized is equal to 

~b(w) = max * ( w ,  1"), * (w ,  1) = (1/2)(w - qc)A(w - ~ )  + ewl, 
I*EB 

Here the function @ and the sets K and B are subject to the conditions of the saddle point theorem [9]. Thus, 
the conditional minimization problem can be formulated as a minimax problem: 

q ( w , l ) =  min mazs* w*,l* max min q(w*,l*).  
w*eK Z*elJ ( ) = Z'eB w*eK 

We find the saddle point by using the algorithm developed by Udzava [9, 10]. We solve the problem of 
minimizing @(w, l n) at the n th  step of the algorithm with a fixed value of the dual vector I = 1 n. Its solution 
w = w n, satisfying the variational inequality 

(w* - w"){A(w n - ~ )  + el'*} t> 0, wn ,w"  e K, (2.3) 

is found in explicit form after application of the Kuhn-Tucker theorem. Then using an operator that projects 
the solution orthogonally onto the set K with the norm [w[a = ~/wAw, we write the  solution as w n = 
PK(qr -- cA-11n). After this, the vector 1 is recalculated in accordance with the formula I n+l = PB(I" + rw") ,  
where PB is an operator that  projects onto the set B with an euclidean norm. The quantity r > 0 is an 
iteration parameter. The initial approximation 1 ~ is assigned arbitrarily, and the computation is ended upon 
satisfaction of the condition 11 " + 1  - -  1'~1 ~< re  (e is the accuracy of the calculations). 

We shall prove that  as n --* eo the sequence of pairs of vectors (w n, 1 n) converges to the saddle point 
(w, 1) if r < 2a/c. Choosing as the permissible variation w* the vector w in inequality (2.3) and the vector 
w n in a similar inequality for w, after addition we obtain 

o~[w n - w[ 2 ~< [w n - w[ 2 ~< - c ( w "  - w ) ( l  n - 1). 
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On the other hand,  since any projection operator for a convex set is a nonstretching transformation, 
we have [1 "+1 - 1] ~< [1" - 1 + r ( w "  - w)[. Thus, 

I1 " + '  - II 2 I1" - II 2 + 2 r ( w "  - w ) ( l "  - 1) + r21w" - w] 2 ~< [1" - II 2 - r(2c /c - r ) l w "  - w l  2. 

It is apparent tha t  the sequence of nonnegative numbers II" - 11 is decreasing and as n ~ co converges to a 
certain limit. It follows from this that  Iw" - w I --. 0. 

In the combined algori thm described above for numerically solving the variational inequality (2.1), 
the recursive calculation of the  iterations is performed on the basis of the compact  mapping Q and two 
nonstretching operators PK and PB. Such an algorithm is stable against round-off errors: the transition to 
the next iteration cannot lead to an increase in the errors. The computat ion can be limited to the so-called 
diagonM sequence, so tha t  only k iterations of the Udzava algorithm have to be calculated at the kth step of 
the successive approximation.  

3. C a l c u l a t i o n  R e s u l t s .  The  algorithm was tested on a nondimensional problem concerning the 
interaction of an elastic layer of thickness H with a perfectly rigid surface. The  vector of the initial velocity 
of the layer v ~ was arbitrarily chosen. The  exact solution of the  problem is constructed by the method 
of characteristics with allowance for friction (Fig. 2). Longitudinal and transverse loading waves begin to 
propagate with the  velocities cl and c2 at the moment  of contact inside the  layer. The  interaction of the 
longitudinal unloading wave and the contact surface at the moment  of t ime tc - 2 H / c l  leads to rebound 
of the layer. Here the velocity averaged over the thickness of the layer in the normal direction is equal to 
- v  ~ The transverse wave affects the tangential velocity component  after reflection. Slip occurs in the contact 
region for c2v~ > f c l v  ~ The  tangential component of the mean velocity at the  moment  tc is calculated as 
v ~ - 2 f v  ~ In the  opposite case, the  stagnation regime occurs: a state of rest is established behind the front of 
the transverse wave. In this regime, the tangential component  of the  mean velocity at the  moment  of reflection 
is found from the  formula v~ - 2c2/c'1). The mean velocity of the  layer is directed perpendicularly to the 
surface for c2 = c l /2  and reverses direction for c2 > cl /2.  

Calculations were performed for different regimes of interaction of the  layer and the surface in 
accordance with the Godunov scheme for solving nondimensional problems of the dynamic  theory of elasticity. 
Quantitative agreement was obtained within the limits of accuracy of the scheme. 

We also examined a problem tha t  models the symmetrical machining of a specimen by two perfectly 
rigid tools of cylindrical form. The  problem was studied in a two-dimensional approximation. The  calculations 
involved the use of a model tha t  describes the dynamic deformation of elastic-ideally-plastic bodies with small 
strains. The numerical realization of the model was based on the two-dimensional Godunov scheme, with the 
use of a procedure to correct the stresses. In light of the symmetry  of the problem, calculations were performed 
only for half of the  specimen: it was assumed that  the lower boundary of the region of the solution was the 
region of contact with the tool and that  the upper boundary was the plane of symmetry.  The load was applied 
to the right boundary,  while the  remaining parts of the contour were free of stresses." 

Figure 3 shows results of calculations of the deformation of the specimen at certain moments  of t ime 
for f -- 0 (without allowance for friction) (a) and f = 0.18 (b). The  plastic zone is hatched. Comparison of the 
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Fig. 3 

results shows that friction significantly alters the structure of the solution�9 With large values for the friction 
coefficients, the plastic zone is stretched out along the contact surface. This stretching can be attributed to 
the presence of substantial shear stresses in the contact region�9 When the values of the friction coefficients are 
small, the contact region takes the shape of a vertical band associated with compressive transverse stresses 
caused by the action of the cylinders�9 

The calculations showed that the proposed algorithm is a reliable method of numerically solving 
problems involving the dynamic contact interaction of deformable bodies. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 97-01- 
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